Photochemical Reduction of NAD+ to 1,4-NADH without an Enzyme

Keisuke Umeda, Asao Nakamura, and Fuji0 Toda*

Department of Bioengineering, Faculty **of** *Engineering, Tokyo Institute of Technolog y, 0-okayama, Meguru-ku, Tokyo, 152, Japan*

Rh(terpy)₂³⁺ and Rh(bpy)₃³⁺ (terpy = 2,2'; 6',2"-terpyridine; bpy = 2,2'-bipyridine) catalyse the regiospecific photochemical reduction of NAD+ into 1,4-NADH; Rh(terpy) $_2^{3+}$ retains its catalytic activity in the photochemical reaction for longer than $Rh(bpy)_{3}^{3+}$.

Many systems for the photochemical reduction of NAD⁺ have been reported recently.¹ Several of these are enzymatic systems. Although enzymes are often highly selective catalysts for reduction at the 4-position (to give 1,4-NADH), they undergo degradation when the system is run for an extended period **of** time. Therefore, enzyme-free systems are a desirable alternative. Unfortunately, the reduction **of** NAD+ by a high potential photosensitizer² or by electrochemical means³

produces a mixture of dimers (NAD2) and NADH isomers which are not catalytically active.

Recently, Wienkamp *et al.* proposed that tris(2,2'-bipyridine)rhodium(III), Rh(bpy)₃³⁺, is an effective catalyst for photochemical or electrochemical reduction.5 The utility of this catalyst is lessened by a tendency for dissociation of one **of** the bipyridine ligands from the reduced form of the complex.6 A previous attempt to enhance the stability of this complex

Figure 1. Reverse-phase HPLC analysis of (a) NAD⁺ buffer solution reduced by NaBH₄; (b) 1,4-NADH buffer solution; (c) the deaerated reaction mixture containing TEOA, $Ru(bpy)_{3}^{2+}$, NAD⁺, and $Rh(\text{terpy})_2^{3+}$ as a catalyst after 90 min irradiation; (d) the same ' mixture before irradiation. All samples were monitored at **340** nm. The peak assignment of (a) was based on results in ref. 8. Initial conditions $[(c)$ and $(d)]$; $[TEOA] = 250$ mm, $[Ru(bpy)₃²⁺] = 50 \mu M$, $[NAD^+] = 4$ mm, and $[Rh(bpy)₃³⁺]$ or $[Rh(tery)₂³⁺] = 250 \mu m$ in 4 ml of buffer solution (pH 8.0). Irradiation was carried out with a 500 W Xe-arc lamp fitted with appropriate glass cut-off filters, with light of wavelengths in the range **420-700** nm. Column: radial PAK cartridge $C-18$, mobile phase $H_2O-0.1$ M NH_4HCO_3-MeOH (30:69:1); flow rate **1.5** ml min-1.

has been reported.7 We describe herein the catalytic activity of bis(2,2';6',2"-terpyridine)rhodium(m), $Rh(\text{terpy})_2^{3+}$, which we have compared with that of $Rh(bpy)_{3}^{3+}$. The catalytic systems consist of one of these two catalysts, triethanolamine (TEOA) which acts as an electron donor, $Ru(bpy)_{3}^{2+}$ as a photosensitizer, and NAD+. The products of the reaction were analysed by **HPLC** and the results are shown in Figure 1. Only 1,4-NADH is produced when the reaction is irradiated [Figure $1(c)$]. The additional peak at 19 min which elutes at the same position as 1,2-NADH is due to $Ru(bpy)_{3}^{2+}$. Significantly, this does not increase in intensity during the course of the reaction. Similar regioselectivity was achieved when $Rh(bpy)_{3}^{3+}$ was used as a catalyst.

The time course of the reaction revealed the differences between the catalysts (Figure 2). The $Rh(bpy)_{3}^{3+}$ reaction showed maximal formation of 1,4-NADH after **4** h, whereas the Rh(terpy) 2^{3+} reaction continued to produce further 1,4-NADH after this time. This is presumably due to the

Figure 2. The variation of [NADH] during irradiation of the reaction mixture with (a) $Rh(bpy)_{3}^{3+}$ and (b) $Rh(\text{terpy})_{2}^{3+}$ as catalyst. The concentration of 1,4-NADH was determined by HPLC analysis. Experimental conditions are as in Figure 1.

greater stability of the bis(tri-co-ordinate) species over the tris(di-co-ordinate species).

In conclusion, $\hat{R}h(\text{terpy})_{2}^{3+}$ is a good catalyst for the photochemical reduction of NAD+ to 1,4-NADH. The details of the mechanism are currently under investigation.

Received, 30th November 1989; Com. 9105123F

References

- **1** D. Mandler and I. Willner, J. *Chem. Soc., Perkin Trans. 2,* **1986,** *805;* **1988, 997;** M. Julliard, J. L. Petit, and P. Ritz, *Biotech. Bioenerg.,* **1986, 28, 1774; Z.** Goren, N. Lapidot, and I. Willner, J. *Mol. Cutul.,* **1988,47,21;** H. K. Chenault and G. M. Whitesides, *Appl. Biochem. Biotech.,* **1987,14, 147.**
- 2 J. Kiwi, *J. Photochemistry,* **1981, 16, 193.**
- **3** F. G. Drakesmith and B. Gibson, J. *Chem. SOC., Chem. Commun.,* **1988, 1493;** M. Jensen and P. H. Elving, *Biochim. Biophys. Actu,* 1984, **764**, 310; M. Stundničkova, H. P.-Klukanová, J. Turánek, and J. Kovai, J. *Electroanal. Chem.,* **1988, 252, 383.**
- **4** R. Wienkamp and E. Steckhan, *Angew. Chem., Int. Ed. Engl.,* **1983, 22, 497.**
- **5 R.** Wienkamp and E. Steckhan, *Angew. Chem., Int. Ed. Engl.,* **1982, 21, 782.**
- **6** M. Kirch, J.-M. Lehn, and J.-P. Sauvage, *Helv. Chim. Actu,* **1979, 62, 1345; S.-F.** Chan, M. Chou, C. Creutz, T. Matsubara, and N. Sutin, J. *Am. Chem. Soc.,* **1981, 103,369.**
- **7 S.** Grammenudi, M. Franke, F. Vogtle, and E. Steckhan, *J. Incl. Phenom.,* **1987,** *5,* **695.**
- 8 H. Jaegfeldt, *Bioelectrochem. Bioenerg.* , **1981,** *8,* **355.**